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Abstract

Flow of water in a uniformly heated horizontal cylindrical duct induces a mixed convection phenomenon. For

adapted coupling of the Reynolds and Rayleigh number values, an instability is reached for which fluctuations of great

amplitude in the wall temperature occur sporadically. The aim of this paper is to analyze this thermal instability and to

propose a physical mechanism which governs this kind of instability. Indeed, we show that this instability is the result of

an exchange of the heat transfer mode from convective to diffusive in the thermal boundary layer, in the bottom of the

cross section. � 2002 Elsevier Science Ltd. All rights reserved.

R�eesum�ee

L’�eecoulement de l’eau dans un conduit cylindrique horizontal et uniform�eement chauff�ee est le si�eege d’une convection
mixte. Pour des valeurs adapt�eees des nombres de Reynolds et de Rayleigh, une instabilit�ee se manifeste par des fluc-

tuations sporadiques et de grande amplitude de la temp�eerature de paroi. L’objet de cet article est d’analyser ce

ph�eenom�eene et de proposer un m�eecanisme physique qui gouverne ce type d’instabilit�ee. En effet, nous montrons que celle-

ci est la cons�eequence d’un �eechange du mode de transfert de chaleur de convectif �aa diffusif dans la couche limite ther-

mique, en bas d’une section droite, puis retour �aa l’�eetat d’origine. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mixed convection flow in a horizontal cylindrical

heated duct is a well known phenomenon [1–3]. The

buoyancy effect induces two contra-rotating convective

rolls in a straight section; there follows the creation of a

temperature difference between the top and the bottom

of a straight cross section.

The laminar regime includes two kinds of flow. The

first one, obtained for low Reynolds ðReÞ and Rayleigh

ðRaÞ numbers, is the stable state and the second one,

obtained when the Reynolds and/or Rayleigh numbers

are increased, is the instabilities regime. An instability

diagram [4], established using the wall temperature

measurement, shows the location of these two states

called ‘‘stable regime’’ and ‘‘instabilities regime’’. The

stable regime has largely been described elsewhere [5–9].

The aim of this paper is to propose the physical mech-

anism governing this kind of instability.

2. Description of the ‘‘instability regime’’

Our experiments concern the flow of distilled water in

a uniformly heated horizontal cylindrical duct. The ex-

perimental set up has been described elsewhere [4]. For

an adapted coupling of the Reynolds and Rayleigh

numbers [4], the instability regime appears. It manifests

itself through large amplitude fluctuations [10–12]. In-

deed, the measurement of the wall temperature, on the

top of cross section, ‘‘Th’’, shows successive fluctuations

separated by various durations of stable laminar phases.

The fluctuations are similar and are characterized by
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two time constants; the first, of an order of 1 s, corre-

sponds to the temperature drop (cooling phase) and the

second, of an order of 10 s, corresponds to the return to

the laminar phase (heating phase). To illustrate this, Fig.

1 shows the evolution of the wall temperature on the top

‘‘Th’’ and on the bottom ‘‘Tb’’ of the cross section.

The occurrence of these fluctuations is random and

corresponds to a modification of the thermal-hydrody-

namical structure of the fluid. In order to emphasize this

fact and to find the physical mechanism which governs

this instability, measurements of temperature were made

in the fluid. Thus a thermocouple was inserted in the

fluid, at the outlet of the heated zone, within a straight

section S at an axial coordinate zs ¼ 120 cm (z ¼ 0

corresponds to the beginning of the heated zone). The

thermocouple position is marked in the plane S by r and
h, the radial and the azimuthal coordinates respectively.

To illustrate this, Figs. 2 and 3 show two typical

examples of the evolution of the wall temperature Th (at

an axial coordinate z ¼ 80 cm) and Tclb at zs ¼ 120 cm

where Tclb is the fluid temperature at a point of the

thermal boundary layer at the bottom of the straight

section on the vertical diameter of section S. The signal

of Tclb was shifted back in order to take into account

the difference ½zs� z80� corresponding to the sections

concerned.

We notice three kinds of fluctuations in the fluid

temperature:

a – a linear increase, see fluctuation ‘‘1’’ of Fig. 2,

b – a linear increase followed by a rapid variation

‘‘RV’’, see fluctuation ‘‘2’’ of Fig. 2 and fluctuation

‘‘3’’ of Fig. 3,

c – a rapid variation ‘‘RV’’ without the linear

increase, see fluctuation ‘‘4’’ of Fig. 3.

The fluctuation of the wall temperature Th is related

to the fluid fluctuation only in cases 1 and 2. In case 3,

the top wall temperature does not exhibit any modifi-

cation and remains stable. These facts demonstrate that

the large amplitude fluctuations in the wall temperature

exist only in the case where there is a linear increase of

Tclb, i.e. fluctuation of Th is a response to the linear

increase of Tclb. The amplitude of Th fluctuation is

correlated to the duration of the linear increase of Tclb:

the shorter the duration, the smaller the amplitude.

In Fig. 3, we marked F the time where a modification

in the stable state occurs (for Tclb, it is the time corre-

sponding to the beginning of linear increase); this time F

could be located for the whole cross section, i.e. for all

points (r; h) of the cross section S. Then we can measure

the time difference between this instant (corresponding

to F ) and the occurrence time of the fluctuation of Th at

the axial coordinate z ¼ 80 cm (the latter will be con-

sidered as a reference time). The set of the points F ðr; hÞ
characterizes the occurrence time of the modification in

the stable state in the whole cross section. So, using

experimental data, Fig. 4 shows schematically the iso-

chronous curves (curves with the same time difference

related to the reference time); the standard deviation for

an isochronous curve is small (less than 0.1 s).

The isochronous curves have the same shape as the

isotherms in the fluid. They show that the instability

phenomenon begins at first in the middle of the thermal

Fig. 1. Evolution of the wall temperature on the top (Th) and

the bottom (Tb) of a cross section at an axial coordinate z ¼ 80

cm (Re ¼ 1800; Ra ¼ 250000).

Fig. 2. Evolution of the wall temperature Th and the fluid

temperature Tclb (Re ¼ 1720; Ra ¼ 303400).

Fig. 3. Evolution of the wall temperature Th and the fluid

temperature Tclb (Re ¼ 1586; Ra ¼ 34600).
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boundary layer in the lower part of the cross section

(curve t1) then it propagates radially, on one hand to-

wards the wall and on the other hand towards the cold

core of the fluid (curves t2). The propagation of the

perturbation towards the upper part of the cross section,

i.e. the thermal stratified zone, occurs in a second stage

towards the curves t3; t4; t5 and t6 successively; the wall at
the top of the cross section is the last to be affected by

the perturbation and it is only at this time that the large

amplitude fluctuation of Th occurs.

3. Analysis of the phenomenon

By analyzing the experimental results, we can pro-

pose a physical mechanism governing this kind of in-

stability.

3.1. Phenomenological approach

We have already seen that the occurrence of a fluc-

tuation in the wall temperature is a consequence of the

linear increase in temperature of the thermal boundary

layer in the lower part of the cross section. In order to

simplify, we will consider only the lower part of the cross

section for which the velocities and temperature fields

are practically axisymmetrical; the cylindrical coordi-

nates h; r and z, the azimuthal, radial and axial coordi-

nates respectively, are used.

3.1.1. Stable regime

In the stable regime and contrary to a Poiseuille flow

in a heated duct where the heat transfer in a cross section

is purely conductive (forced convection), in mixed con-

vection phenomenon the heat supplied to the wall in the

lower part of the cross section is transferred by the

transverse velocities (secondary flow) to the upper part

of the cross section; heat is advected by the transverse

component of the velocity vhðh; r; zÞ. In this case, we say

that the heat transfer is convective (free convection) in

the lower part of a cross section; if we consider a slice of

fluid, of dz thickness, in the lower part of the cross

section there is no accumulation of internal energy. In-

deed, experimental results show that oTclb=ot ¼ 0. Else-

where [8,9], the numerical and experimental results show

that the temperature of the boundary layer in the lower

part of the cross section is constant when z increases, i.e.
oTclb=oz ¼ 0. This means that, in this zone, there is no

advection of heat in the axial direction since

vzðh; r; zÞðoTclb=ozÞ ¼ 0. So, in the stable regime, in the

lower part of the cross section, heat transfer is convec-

tive (free convection in the cross section) from the lower

part to the upper part. However for the upper part heat

transfer is diffusive (forced convection in the axial di-

rection).

3.1.2. Instability regime

When the instability occurs, experimental results

show that in the thermal boundary layer (lower part of

the cross section) oTclb=ot is different from zero; in this

case there is an accumulation of internal energy in this

zone, that is: qCpðoTclb=otÞ 6¼ 0. Thus, we find a situation

which is analogous to the case of a heated Poiseuille flow

(forced convection, in the thermal transient phase, where

versus time, we have increasing of internal energy of

fluid and in a parallel fashion, creation of an axial

temperature gradient, that is oTclb=oz 6¼ 0 [13]). We can

deduce that for a slice of fluid, of dz thickness, in the

lower part of the cross section, heat advection in the

axial direction z is not zero since vzðh; r; zÞðoTclb=ozÞ 6¼ 0.

This increase in internal energy, in the lower part, may

take place only if free convection becomes unable to

totally advect heat towards the upper part of the cross

section (contrary to the stable regime). So, heat supplied

by the wall, in the lower part, is transferred radially by

thermal diffusion in the thermal boundary layer towards

the center of the cross section. This thermal diffusion

which was neglected in the stable regime in relation to

free convection, becomes an effective mode of heat

transfer. Schematically, for an increase in internal en-

ergy to occur and for diffusion to be preponderant it

suffices that transverse velocities no longer evolve versus

z (or that their evolution versus z becomes less significant

than in the stable regime, i.e. ðovhðh; r; zÞ=ozÞstable >
ðovhðh; r; zÞ=ozÞunstable), or that in the extreme limit

ðovhðh; r; zÞ=ozÞunstable ¼ 0; this behavior is limited to the

slice of fluid (of dz thickness) concerned by the insta-

bility.

Thus, each transition (point F of Fig. 3), corre-

sponding to the beginning of the linear increase in the

lower part, is the sign of a sudden change in heat

transfer mode in the boundary layer from a convective

mode to a diffusive one. The increase in internal energy

and the creation of an axial temperature gradient is as-

sociated to this diffusive mode. The convective heat

Fig. 4. Isochronous curves in a straight cross section.
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transfer (stable regime) is characterized by the time

constant sdqm ¼ L2=m which is related to the fluid vis-

cosity m and the characteristic length L. For water, as the
working fluid, this time constant is about one second for

a characteristic length (boundary layer thickness) of

about 1 mm. The thermal diffusivity intervenes in the

diffusive heat transfer and in this case the time constant

sdc is about few seconds for the same characteristic

length.

The change in the mode of heat transfer is all the

more possible since both time constants (sdqm and sdc)
are close, i.e. the Prandtl number of the fluid is not too

far from unity. This means that both of these modes of

heat transfer are in competition if thermal and hydro-

dynamical boundary layers have thicknesses of the same

order. Thus, when we use a mixture of (water + glycol)

as the working fluid [14], the Prandtl number Pr ¼ 30,

the convective mode is largely preponderant compared

to the diffusive mode and in this case the probability of

the occurrence of this instability is greatly reduced.

This phenomenological description could be com-

pleted by an analytical approach which uses the heat

equation.

3.1.3. Analytical approach

The heat equation, in its local form, without any

internal source term can be written as

oT
ot

þ vz
oT
oz

þ vr
oT
or

þ 1

r
vh
oT
oh

¼ aDT ; ð1Þ

where r; h and z are, respectively, the radial, angular and
axial coordinates, t is time, T the local temperature of a

fluid element in the thermal boundary layer in the lower

part of the cross section, a the thermal diffusivity of the

fluid and D is the Laplacian operator. In this approach

the variation in physical parameters versus temperature

has been neglected.

In order to simplify the expression of Eq. (1), we

write that

aDT ¼ qd;

vr
oT
or

þ 1

r
vh
oT
oh

¼ qc;
ð2Þ

where qd represents the heat supplied by diffusion to the

fluid element and qc the heat advected in a cross section,

i.e. in r and h directions; this corresponds to the con-

vective transfer (free convection) in a cross section.

In the stable regime, experiments show that oT=ot ¼ 0

and oT=oz ¼ 0, so it can be deduced that: qc ¼ qd. Lo-
cally, in the lower part of the cross section, the heat

supplied by diffusion is transferred by convection in the

cross section (free convection); the secondary flow

(transverse velocities) advects energy from the bottom to

the upper part of the cross section. The main flow, to

which the vz component is associated does not take part

in heat transfer.

In the instabilities regime, in the lower part of the

cross section, the experimental results show that (see

phase 2 of Fig. 5) an increase of internal energy occurs

which manifests itself through the linear increase in the

temperature Tclb (with a positive slope about 1 �C/s). In
this case oT=ot > 0 and oT=oz > 0, so the difference

[qd � qc] becomes positive, thus

oT
ot

þ vz
oT
oz

¼ qd � qc > 0:

As the result, heat supplied by diffusion is not entirely

transferred by free convection in the cross section, the

heat transfer mode becomes partially diffusive. This

shows that the main flow becomes effective towards heat

transfer through the term vzðoT=ozÞ.
The energy acquired by the fluid during phase 2

(linear increase in Tclb) is abruptly dissipated during

phase 3 (rapid decrease in temperature, slope about 10

�C/s); in this case [qd � qc] is negative and so qc is

dominant again. Convective rolls undergo an extension

in the cross section and their trajectory expands tran-

siently, in the thermally stratified zone. This extension

causes the upper part of the cross section to cool, in

particular on the wall, by destruction of the thermal

stratified zone.

Phases 2 and 3 are characterized by a difference be-

tween their time constants (in a ratio of about 5). This

fact shows that the physical processes which govern

these phases cannot be the same; indeed, the difference

[qd � qc], which is positive for phase 2, is governed by

thermal diffusion while for phase 3, [qd � qc] is negative
and so heat transfer is convective. Transition from phase

2 to 3 corresponds to a second change of heat transfer

mode, from diffusive to convective. This transition is

induced by the reactivation of free convection due to the

local heating of the fluid and so to the decrease of its

volume mass in the bottom of the cross section.

Fig. 5. Evolution of the wall temperature Th and the fluid

temperature Tclb during the occurrence of the fluctuation

(Re ¼ 1720; Ra ¼ 303400).

2156 C. Abid et al. / International Journal of Heat and Mass Transfer 45 (2002) 2153–2157



Phases 4 (decrease in temperature Th) and 3 which

have time constant of the same order occur approxi-

mately simultaneously. This shows the coupling between

phases 3 and 4. Phase 4 is followed by a return to the

stable state (phase 5) with a time constant of about 10 s.

So, it is the thermal diffusion which intervenes to re-

construct the thermal stratified zone, according to the

initial state cohesion of events in the fluid, particularly in

the thermal boundary layer.

The lower part is noteworthy; indeed:

• In this zone, the isochronous curves (Fig. 4) have a

circular shape. This means that this instability is set

off simultaneously for all the points located on a cir-

cular arc.

• The shape of the isochronous curves coincides with

the shape of the isotherm curves.

These facts show that this instability is a global

perturbation of the thermal boundary layer which does

not modify the isotherm shapes. So, we can consider this

situation as a perturbed state of the laminar regime.

We now perform a linear stability analysis of the

basic state discussed above. Thus, we introduce dvr; dvh

and dvz as perturbations of the velocity profile and e as

perturbation of the temperature, keeping in mind that

they are dependent upon r; h; z and time. The heat

equation (1) linearized with respect to such perturba-

tions may be written as

E þ q0d ¼ q0c � L with E ¼ oe
ot

þ vz
oe
oz

;

L ¼ dvr
oT
or

þ 1

r
dvh

oT
oh

; q0d ¼ aDe;

q0c ¼ vr
oe
or

þ 1

r
vh

oe
oh

;

ð3Þ

where L and E correspond, respectively, to hydrody-

namical and thermal fluctuations; the first line of (3)

expresses the coupling of these perturbations. This

coupling is effective only if the thicknesses of the hy-

drodynamical and thermal boundary layers are close

enough; which is in agreement with the argument con-

cerning the ratio of the momentum diffusivity to the

thermal diffusivity, i.e. the Prandtl number which must

be not too far from unity.

If we consider Eq. (3), in order for its terms to be of

the same magnitude, the following conditions must be

verified, that is:

oe
or


 oT
or

and
oe
oh


 oT
oh

: ð4Þ

It is easy to see that these conditions are experimen-

tally verified, however as oT=oh is very small the e
perturbation must intervene simultaneously according

to the isotherms curve in the lower part of the cross

section.

4. Conclusion

In this paper, we have shown that thermal instability

induced in the case of a mixed convection phenomenon

is the result of a change in the heat transfer mode, in the

lower part of the cross section, from a convective to a

diffusive mode. This change occurs due to a competition

between transverse (vertical) and axial (longitudinal)

components of the velocity to advect heat supplied by

the wall.
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